
TROI SERIAL PLUG-IN™ 1.0
USER GUIDE
February 1999

Troi Automatisering
Vuurlaan 18
2408 NB Alphen a/d Rijn
The Netherlands
Tel: +31-172-426606
Fax: +31-172-470539

You can also visit the Troi web site at: <http://www.troi.com/> for additional informa-
tion.

Troi Serial Plug-in is copyright 1999 of Troi Automatisering. All rights reserved (23-Feb-1999).

Table of Contents

Installing plug-ins ... 1

Summary of functions ..2

Using external functions ..2

Serial-Version ..2

Serial-GetPortsNames .. 3

Serial-Open ..4

Specifying the port settings 4

Specifying the handshake options 5

Serial-Close ... 9

Serial-Receive ..10

Serial-Send ...11

Receiving Data via Dispatch Scripting™..12

Serial-SetDispatchScript ..14

Serial-DataWasReceived .. 15

Serial-RestoreSituation .. 16

Serial-ToASCII ... 17

i

Installing plug-ins

For Macintosh:
■ Quit FileMaker Pro.
■ Put the file "Troi Serial Plug-in" from the folder "MacOS" into the "FileMaker

Extensions" folder in the FileMaker Pro 4 folder.
■ If you have installed previous versions of this plug-in, you are asked: “An

older item named “Troi Serial Plug-In” already exists in this location. Do you
want to replace it with the one you’re moving?’. Press the OK button.

■ Start FileMaker Pro. The first time the Troi Serial Plug-in is used it will dis-
play a dialog box, indicating that it is loading and showing the registration sta-
tus.

For Windows:
■ Quit FileMaker Pro.
■ Put the file "trserial.fmx" from the directory "Windows" into the

"SYSTEM" subdirectory in the FileMaker Pro 4.0 directory.
■ If you have installed previous versions of this plug-in, you are asked:

“This folder already contains a file called 'trserial.fmx'. Would you
like to replace the existing file with this one?’. Press the Yes button.

■ Start FileMaker Pro. The Troi Serial Plug-in will display a dialog
box, indicating that it is loading and showing the registration status.

TIP You can check which plug-ins you have loaded by going to the plug-in preferences: Choose
Preferences from the Edit menu, and then choose Plug-ins.

You can now open the file "SeriExpl.fp3" to see how to use the plug-in's functions. There is also a Function
overview in this file.

IMPORTANT There is a problem in FileMaker Pro 4.0v1. Please make sure that all plug-ins that are in the
folder "FileMaker Extensions" are enabled in the preferences. (Under Edit/ Preferences/ Application/ Plug-
ins). Make sure all plug-ins have a cross before their name. Remove plug-ins you don't use from the
"FileMaker Extensions" folder.
NB: This bug is fixed in version 4.1 and 4.0v2. So please upgrade to these versions.

If You Have Problems

This user manual tries to give you all the information necessary to use this plug-in. So if you have a prob-
lem please read this user guide first. If that doesn't help you can get free support by email. Send your ques-
tions to support@troi.com with a full explanation of the problem. Also give as much relevant information
(version of the plug-in, which platform, version of the operating system, version of FileMaker Pro) as pos-
sible.

If you find any mistake in this manual or have a suggestion please let us know. We appreciate your feed-
back!

1

Summary of functions

Plug-ins add new functions to the standard functions that are available in FileMaker Pro. You can see those
extra functions for all plug-ins at the top right of the Specify Calculation Box:

IMPORTANT In the United States, commas act as list separators in functions. In other countries semi-
colons might be used as list separators. The separator being used depends on the operating system your
computer uses, as well as the one used when the file was created. All examples show the functions with
commas.

The Troi Serial Plug-in adds the following functions:
function name short description
Serial-Version check for correct version of the plug-in

Serial-GetPortsNames returns the names of all serial ports that are available on the computer
Serial-Open opens a serial port
Serial-Close closes a serial port
Serial-Receive receives data from a serial port
Serial-Send send data to a serial port
Serial-SetDispatchScript tell the plug-in which script to call when data is received
Serial-DataWasReceived returns if data was received on a open port
Serial-RestoreSituation tell the plug-in to bring the original file back to the front
Serial-ToASCII converts (one or more) numbers to their equivalent ASCII characters

Using external functions

External functions for this plug-in can be used in a script step using a calculation. The external functions
should not be used in a define field calculation.

IMPORTANT The Balance functions have to be used in a specific way, to create the desired effect. See the
section on Balance functions for the specifics on this.

Serial-Version

Example usage: External(Serial-Version; "") will return "Troi Serial Plug-in 1.0b1".

IMPORTANT You should always check if the plug-in is loaded, by using this function. If the plug-in is not
loaded use of external functions may result in unexpected result or data loss, as FileMaker will return an
empty field to any external function that is not loaded.

2

Plug-in Names

Select External functions
to see all the plug-ins

External Functions
shown here

An External
function

Serial-GetPortNames

Syntax External("Serial-GetPortNames" , "")

Returns the names of all serial ports that are available on the computer.

Parameters
no parameters leave empty for future use.

Result

The returned result is a list of serial ports that are available on the computer that is running FileMaker Pro.
Each available port is on a different line. On a desktop Mac a typical result will be:

Printer Port¶
Modem Port¶

On a portable Mac a typical result will be:
Printer-Modem Port¶
Internal Modem¶

On Windows the result will be:
COM1¶
COM2¶
COM3¶
COM4¶

Use this function to let the user of the database choose which port to open. Store the name of the chosen
port in a global field. You can then check the next time the database is opened whether the portname is still
present and ask the user if he wants to change his preference.

If an error occurs an error code is returned. Returned error codes can be:
$$-108 memFullErr Ran out of memory

Other errors might be returned.

NOTE On Windows currently there is no apparent way to test for the available portnames, so at the
moment this function always returns the same result.

3

Serial-Open

Syntax Set Field[gErrorCode, External("Serial-Open" , "portname | switches ")]

Opens a serial port with this name and the specified parameters.

Parameters
portname: the name of the port to open
switches: (optional) specifies the setting of the port like the speed of the port etc.

Result

Returned result is an error code:
0 no error
$$-50 paramErr There was an error with the parameter
$$-108 memFullErr Ran out of memory
$$-97 portInUse Could not open port, the port is in use
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer

Other errors might be returned.

Example usage

Set Field[gErrorCode, External("Serial-Open" , "COM2 | baud=19200")]

will open the COM2 port with a speed of 19200 baud.

Specifying the port settings

Default port settings

A serial port can be configured in a lot of ways. These settings can be set by specifying switches. If you
don't specify any switches the port is initialised to the following settings: a speed of 9600 baud, no parity, 8
data bits, 1 stop bit, no handshaking. If you want to use this setting open the port like this:

Set Field[gErrorCode, External("Serial-Open", "COM2")]

Specifying other port settings

It is recommended that you set the port settings explicitly.. Give the settings by concatenating the desired
settings keywords. You specify them like this:

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 parity=none data=8 stop=10 flowControl=XOnXOff")]

You can set the speed, the parity, the number of data and stopbits, and the handshaking to use. Note that the
order of the keywords and case are ignored. All keywords are optional and should be separated by a space
or a return.

4

Specifying the port speed

The port speed indicates how quick a the data is transported over the serial line.
Allowed values for the port speed are:

NOTE Not all speeds may be supported on all serial ports. Check the documentation of the computer and
the equipment you want to connect.

You need to specify the same speed that the other equipment is using. Higher port speeds can result in loss
of data if the serial cable can't cope with this speed. If this happens try a lower speed.

Specifying the bit format options

Data over a serial port is send in small packet of 4 to 10 bits. This packet consists of 4-8 data bits, followed
by a parity bit and stopbits.

Data bits
You can specify the number of the data bits by adding one of the datasize keywords to the switch parame-
ter. The most used value is 8 data bits. Allowed values for the number of data bits are:

Parity bits
You can specify the parity bit by giving adding one of the following keywords to the switch parameter:

Stop bits
You can specify the number of stopbits by giving adding one of the following keywords to the switch para-
meter:

Here stop=10 means 1 stop bit, stop=15 means 1.5 stopbit and stop=20 means 2 stopbits.

5

d a t a = 7
d a t a = 8

d a t a = 4
d a t a = 5
d a t a = 6

p a r i t y = o d dp a r i t y = n o n e p a r i t y = e v e n

s t o p = 1 5s t o p = 1 0 s t o p = 2 0

b a u d = 7 2 0 0
b a u d = 9 6 0 0
b a u d = 1 4 4 0 0
b a u d = 1 9 2 0 0

b a u d = 2 8 8 0 0
b a u d = 3 8 4 0 0
b a u d = 5 7 6 0 0

b a u d = 1 1 5 2 0 0
b a u d = 2 3 0 4 0 0

b a u d = 1 8 0 0
b a u d = 2 4 0 0
b a u d = 3 6 0 0
b a u d = 4 8 0 0

b a u d = 1 5 0
b a u d = 3 0 0
b a u d = 6 0 0
b a u d = 1 2 0 0

Specifying the handshaking options

Handshaking is a way to ensure that the transfer of data can be stopped temporarily. This also called (data)
flow control. A serial port can use hardware handshaking and software handshaking. For hardware hand-
shaking to work the serial cable must have wires to support it.

Using the Serial-Open function this plug-in allows a basic way to set the handshaking and also an advanced
way, which gives more options, but most users probably don't need.

Basic handshaking options

Basic handshaking has 3 keywords:

f l o w C o n t r o l = D T R D S R f l o w C o n t r o l = R T S C T S f l o w C o n t r o l = X O n X O f f

You can specify one or more of these flow control keywords. You should specify at least one of these key-
words. Try flowControl=DTRDSR as this is mostly supported. FlowControl=DTRDSR and f l o w C o n t r o l = R T S C T S
are hardware handshaking options, for which you need proper cabling. FlowControl=XOnXOff is a software
based handshake option.

FlowControl=DTRDSR means that the signal DTR is used for input flow control and DSR for output flow
control. FlowControl=RTSCTS means that the signal RTS is used for input flow control and CTS for output
flow control. FlowControl=XOnXOff uses a XOff character (control-S) and a XOn character (control-Q) to
stop input and output flow.

IMPORTANT Do not use F l o w C o n t r o l = X O n X O f f if you want to transfer binary data, like pictures. This pro-
tocol uses two ASCII characters that might also be in the binary data. F l o w C o n t r o l = X O n X O f f works fine with
normal text.

Example 1

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR")]

This will set the port to use D T R / D S R hardware handshaking.

Example 2

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR
flowControl=RTSCTS flowControl=XOnXOff")]

This will set the port to use all 3 types of handshaking in parallel.

6

Advanced handshaking options

Advanced handshaking options allows you more control over the serial port settings. It enables you to set
the handshaking of the output an input separately.

With advanced handshaking you can use the following keywords:

keyword meaning
inputControl=XOnXOff use XOnXOff for input handshaking
outputControl=XOnXOff use XOnXOff for output handshaking

inputControl=RTS use RTS for input handshaking
outputControl=CTS use CTS for output handshaking

inputControl=DTR use DTR for input handshaking
outputControl=DSR use DSRfor output handshaking

DTR=enabled set DTR signal permanent to high
DTR=disabled set DTR signal permanent to low
RTS=enabled set RTS signal permanent to high
RTS=disabled set RTS signal permanent to low

Below you find how the basic handshaking keywords relate to the advanced handshaking keywords:

basic keyword = the same as 2 advanced keywords
flowControl=XOnXOff = inputControl=XOnXOff outputControl=XOnXOff
flowControl=RTSCTS = inputControl=RTS outputControl=CTS
flowControl=DTRDSR = inputControl=DTR outputControl=DSR

The other advanced keywords don't have a equivalent.

NOTE You can mix the basic handshaking keywords with the advanced handshaking keywords, as long as
this is sensible.

Example 1

If you want to use DTR handshaking for input flow control and CTS for output flow control use the follow-
ing settings to open COM1:

Set Field[gErrorCode, External("Serial-Open",
"COM1 | baud=9600 parity=none data=8 stop=10
outputControl=CTS inputControl=DTR")]

Example 2

If you want to enable the DTR signal and use XOnXOff input flow control use the following settings to
open COM1:

Set Field[gErrorCode, External("Serial-Open",
"COM1 | baud=9600 parity=none data=8 stop=10
DTR=enabled inputControl=XOnXOff")]

7

Example 3

Set Field[gErrorCode, External("Serial-Open",
"COM2 | baud=9600 data=7 parity=odd stop=20 flowControl=XOnXOff
outputControl=CTS inputControl=DTR")]

This shows that XOnXOff is used for input and output flow control and also DTR handshaking for input
flow control and CTS for output flow control.

8

Serial-Close

Syntax Set Field[gErrorCode, External("Serial-Close" , "portname")]

Closes a serial port with the specified name . If the portname parameter is "" ALL ports are closed.

Parameters
portname: the name of the port to close

Result
The returned result is an error code:

0 no error the port was closed
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-108 memFullErr Ran out of memory

Other errors might be returned.

Example Usage

This will close the COM3 port:

Set Field[gErrorCode, External("Serial-Close" , "COM3")]

This will close all open ports:

Set Field[gErrorCode, External("Serial-Close" , "")]

9

Serial-Receive

Syntax Set Field[gResult, External("Serial-Receive" , "portname")]

Receives data from a serial port with the specified name . The port needs to be opened first (See Serial-
Open). If no data is available an empty string is returned:"".

Parameters
portname: the name of the port to receive data from

Result

The returned result is the data received or an error code. An error always starts with 2 dollars, followed by
the error code. You should always check for errors when receiving by testing if the first two characters are
dollars. See below.

Returned error codes can be:
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The input buffer is full

Other errors might be returned.

Example Usage

Set Field[gResult, External("Serial-Receive" , "Modem port")]

This will receive data from the Modem port.

Example: Receiving and Testing for Errors

Below you find a "Receive Data" script for receiving data into a global text field g T e m p R e s u l t R e c e i v e d ,
The script tests for errors. gPortName is a global text field where the name of the previously opened port
was stored.

Set Field [gTempResultReceived, External("Serial-Receive", gPortName)]
If [Left(gTempResultReceived, 2) = "$$"]

B e e p
If [gTempResultReceived = "$$-28"]

Show Message [Open the port first]
E l s e

If [gTempResultReceived = "$$-207"]
Show Message [Buffer overflow error.]

E l s e
Show Message [An error occurred!]

End If
End If
Halt Script

End If

10

Serial-Send

Syntax Set Field[gResult, External("Serial-Send" , "portname | data")]

Sends data to the serial port with the specified name . The port needs to be opened first (See Serial-
Open).

Parameters
portname: the name of the port to send data to
data: the text data that is to be sent to the serial port

Result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You
should always check for errors when sending by testing if the first two characters are dollars. See below.

Returned error codes can be:
0 no error the data was send
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr A serial port with this name is not available on this computer
$$-4211 AllPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The output buffer is full

Other errors might be returned.

Example Usage

Set Field[gResult, External("Serial-Send" ,
"Modem port| So long and thanks for all the fish")]

This will send the string "So long and thanks for all the fish" to the Modem port.

Example: Sending and Testing for Errors

Below you find a "Send Data" script for sending data from a global text field
gTempResultReceived, The script tests for errors. gPortName is a global text field where the name
of the previously opened port was stored.

Set Field [gErrorCode, External("Serial-Send", gPortName & "|" & gTextToSend)]
If [Left(gErrorCode, 2) = "$$"]

B e e p
If [gErrorCode = "$$-28"]

Show Message [Open the port first]
E l s e

If [gErrorCode = "$$-207"]
Show Message [Buffer overflow error.]

E l s e
Show Message [An error occurred while sending!]

End If
End If
Halt Script

End If

11

Receiving data via Dispatch Scripting™

The dilemma: FileMaker currently doesn't have a easy, cross platform way to handle an event, like when
data is received. To make it nevertheless possible we have come up with what we call Dispatch Scripting™.

This plug-in has a simple and cross platform way to execute a script when data has been received. This is
done via a Dispatch Script. If you want this functionality you need to implement the Dispatch functions in
your database. This is how this can be done:

During development

You have to implement this once:
- write the Dispatch Script or change an existing script
- include the Dispatch Script in the menu, so it can be called from the keyboard with control-1 to

control 9 (Windows) or command-1 to command-9 (Mac)
- write a "Start receiving script" that

• opens the serial port
• and tells the plug-in which is the Dispatch Script.

When Running the database

When the database is running and you want to begin receiving:
- perform the "Start receiving script".

This tells the plug-in for example that the Dispatch Script can be called from the keyboard with control-1
(Windows) or command-1 (Mac).

This is what happens when data arrives:
- the plug-in will bring the database file to the front and simulate a press on the keyboard:control-1

(Windows) or command-1(Mac).
- this will start the Dispatch Script, which can handle the receiving of the data.

NOTE You can still use the Dispatch Script for other actions, so this doesn't cost a place in the menu.
That's why we call it a dispatching script: when called it determines if it was called because there was data
received and if yes it will dispatch the processing.

Functions to implement Dispatch Scripting

The following external functions help in achieving the receiving of data via the Dispatch Script.

Serial-SetDispatchScript tell the plug-in which (Dispatch) script to call when data is received
Serial-DataWasReceived returns 1 when data was received on a open port
Serial-RestoreSituation tell the plug-in to bring the original file back to the front

See the sample file Dispatch.fp3 for a working example.

12

Example Dispatch Script

Below you find a sample "To Menu" Dispatch Script:

If [External("Serial-DataWasReceived", "")]
Perform Script [Sub-scripts, "Process Data Received"]

E l s e
Enter Browse Mode []
Go to Layout [“Menu”]
Halt Script

End If

This script checks if there is data received. If this is the case it dispatches to the script "Process Data
Received" which receives the data and puts it into a field.Else it will do its normal business (going to a
menu).

Make sure you include this script in the menu. We assume this script can be performed with the keyboard
shortcut :control-1 (Windows) or command-1 (Mac)

Example Process Data Received Script

Below you find a sample "Process Data Received" script, which gets the data from the plug-in
into the field mesReceived.

Enter Browse Mode []
Perform Script [Sub-scripts, "Receive Data in global gTempResultReceived"]
Set Field [mesReceived, mesReceived & gTempResultReceived]
Set Field [gErrorCode, External("Serial-RestoreSituation", "")]

Example "Set Dispatch Script" Script

Below you find a sample "Set Dispatch Script" Script:

Set Field [gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptkey=1")]

If [Left(gErrorCode, 2) = "$$"]
B e e p
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

Example Start Receiving Script

Below you find a sample "Start Receiving" script:

Perform Script [Sub-scripts, "Open Serial Port"]
Perform Script [Sub-scripts, "Set Dispatcher Script"]

When you want to begin receiving perform the "Start receiving script".

13

Serial-SetDispatchScript

Syntax Set Field[gResult, External("Serial-SetDispatchScript", "filename | scriptkey=x ") or
Set Field[gResult, External("Serial-SetDispatchScript", "")

Sets the Dispatch Script to call when data is received. If you give an empty parameter "", the Dispatch
Script is removed.

Parameters
filename: the name of the file with the Dispatch Script
scriptkey=x : the key number in the menu of the Dispatch Script. x must be in the range from 0-9

Result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You
should always check for errors.

Returned error codes can be:
0 no error the Dispatch Script was set
$$-50 paramErr There was an error with the parameter

Other errors might be returned.

Example Usage

Set Field[gErrorCode, External("Serial-SetDispatchScript",
Status(CurrentFileName) & "| scriptkey=1")]

This will set the Dispatch Script to the script with shortcut control-1 (or command-1) of the current file.

Example Usage (resetting the Dispatch Script)

Set Field[gErrorCode, External("Serial-SetDispatchScript", "")]

This will reset the Dispatch Script. No action is taken when data is received.

14

Serial-DataWasReceived

Syntax Set Field[gResult, External("Serial-DataWasReceived", "")

Returns 1 when data was received on a serial port. Use this function to see if this is an event that needs
to be handled.

Parameters
no parameters leave empty for future use.

Result

The returned result is an boolean value. Returned is either:
0 no data received
1 data was received in the buffer

When this function returns 1 you can get the data with the function Serial-Receive.

Example Usage

If[External("Serial-DataWasReceived", "")]
Perform Script [Sub-scripts, “Process Data Received”]

E l s e
... do something else

E n d i f

15

Serial-RestoreSituation

Syntax Set Field[gResult, External("Serial-RestoreSituation", "")]

Bring the database file that was in front, before the Dispatch Script was called, back to the front.

Parameters
no parameters leave empty for future use.

Result

The returned result is an error code:
0 no error

At the moment no other results are returned.

Example Usage

Set Field [gErrorCode, External("Serial-RestoreSituation", "")]

16

Serial-ToASCII

Syntax Set Field[gResult, External("Serial-ToASCII", "asciiCode | asciiCode | asciiCode |...")]

Converts (one or more) numbers to their equivalent ASCII characters.

Parameters
ASCIIcode(s) one or more numbers in the range from 0-255.

Result

The returned result is the string of text of the ASCII codes.

Example Usage

Set Field [text, External("Serial-ToASCII", "65|65|80|13")]

This will result in the text "AAP<CR>" where <CR> is a Carriage Return character.

NOTE You can also use hexadecimal notation for the numbers. Use 0x00 to 0xFF to indicate hexadecimal
notation.

Example Usage

Set Field [text, External("Serial-ToASCII", "0x31|0x32|0x33|0x0D|0x0A")]

This will result in the text "123<CR><LF>" where <CR> is a Carriage Return character and <LF> is a
Line Feed character.

NOTE The graphic rendition of characters greater than 127 is undefined in the American Standard Code
for Information Interchange (ASCII Standard) and varies from font to font and from computer to computer
and may look different when printed.

17

